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The nervous system is evolutionarily conservative compared to
the peripheral appendages that it controls. However, species-
specific behaviors may have arisen from very small changes in
neuronal circuits. In particular, changes in neuromodulatory
systems may allow multifunctional circuits to produce different
sets of behaviors in closely related species. Recently, it was
demonstrated that even species differences in complex social
behavior may be attributed to a change in the promoter region
of a single gene regulating a neuromodulatory action.
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Abbreviations
FMRFamide Phe-Met-Arg-Phe-amide
GABA γ-aminobutyric acid
GPR gastropyloric receptor
JAR jamming avoidance response
NMDA N-methyl-D-aspartate
STG stomatogastric ganglion

Introduction
Neuronal basis of species-specific behavior
Natural selection acts on many aspects of organisms, from
their appearance to their molecular makeup. Evolutionary
pressures also shape the behavior of organisms, producing
species-specific behaviors. Although it is a difficult task to
determine the neuronal basis for complicated behavior
even in a single species, insights into neuronal circuit
design can be gained by comparing closely related species
with different behaviors. The variations seen between the
species’ nervous systems could serve as natural experi-
ments for probing the role of those structures in the
production of behavior [1]. Furthermore, determining the
extent of the differences between the nervous systems of
two species with different behaviors can give an indication
of how finely tuned nervous systems must be in order to
generate appropriate behaviors.

Numerous examples exist showing that neuronal differ-
ences can cause changes in behavior between closely
related species [2–4]. For example, two closely related
species of deer, the white-tailed deer (Odocoileus vergini-
anus) and the mule deer (O. hemionus) use different gaits
when alarmed. The white-tailed deer gallop, whereas the
mule deer stot. It can be inferred that this species differ-
ence in behavior is caused by genetic differences in the

nervous systems of the two species because hybrid off-
spring produce an intermediate behavior: they bound
when alarmed [2]. Recently, the neural basis for species-
specific behavior was dramatically demonstrated by
transplanting vocalization-related brain tissue from a
Japanese quail to a chicken embryo, and transforming the
vocalizations from one species to the other [5••].
Progressive changes in behavior can also be traced in cer-
tain lineages in which new behaviors evolved as a series of
elaborations of pre-existing specialized behaviors
[6•,7,8,9•].

Mechanisms underlying species differences in behavior
Numerous factors might contribute to producing a differ-
ence in the behaviors of closely related species. First, the
species could differ in their acquisition of sensory signals.
There are many examples of elaboration or loss of sensory
structures in related species [10,11]. Second, the central
neuronal networks of two related species might process
information differently. This could involve changes in the
number or properties of cells and synapses in the central
nervous system or in their pattern of connectivity [12–15].
Finally, the peripheral structures might be modified to
respond differently to central commands. Changes in the
relative size, position, or number of muscles can produce
qualitatively different movements from the same neuronal
motor pattern [9•,16,17•]. 

It has been suggested that because peripheral structures
are subject to fewer constraints, they might be more likely
than central circuits to exhibit phylogenetic differences
([12–14,18]; see, however, [19]). However, general proper-
ties of the nervous system and specific developmental
mechanisms serve to keep the nervous system matched to
a changing periphery. For example, a change in the size of
sensory or motor structures will induce a corresponding
change in the number of central neurons that serve that
structure [20,21]. In addition, some changes in sensory
input can be automatically accepted by existing neuronal
circuits without necessarily inducing any central changes
[22••]. In this review, we will focus primarily on how cellu-
lar changes to central neuronal networks may mediate the
evolution of species-specific behaviors.

Are neurons conserved through evolution?
The basic organization of nervous systems tends to be
highly conservative. Members of species belonging to the
same genus often have almost indistinguishable nervous
systems. In invertebrates, where individual neurons can
be unambiguously identified from animal to animal with-
in a species, homologous neurons can be identified in
disparate members of a taxon such as Insecta [23] and
even across phyla [24•]. Of course, homologous neurons
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can exhibit certain morphological modifications that are
taxon specific [25].

Homologous neurons in disparate species also can be iden-
tified by neurochemical criteria. For example, homologous
serotonin-immunoreactive neurons can be identified in
highly divergent species within the class of gastropod mol-
luscs [26]. Similarly, in the class Crustacea, serotonergic
neurons that have been identified in highly derived deca-
pod species such lobsters and crayfish [27] are also found
in primitive anaspid species such as Anaspides tasmaniae
[28]. Although there are important examples of prominent
neurons that have been lost during evolution in some
members of a lineage [29], our impression is that identified
neurons are often conserved during evolution.

The most common difference seen in closely related
species is a change in the number of cells of a particular
type [14,30,31•,32,33,34•]. The organizational features of
some neuronal structures, such as the laminar organization
of neuronal cell types (e.g. as in the cerebral cortex, the reti-
na, and certain nuclei), provide a simple mechanism for
addition or subtraction of identical units, leading to compu-
tationally important changes in neuronal number [35•,36]. 

Is circuit organization conserved through
evolution?
Not only can individual homologous neurons be identified
across species within a phylum but, as might be expected,
entire circuits are conserved, even across phylogenetic
orders. For example, the basic organization of the central
pattern generators for locomotion is conserved in a variety
of vertebrate spinal cords, including the spinal cord of lam-
prey, larval Xenopus, and neonatal rat [37•]. However,
differences in the detailed cellular properties of spinal
neurons and the amount of excitatory input that they
receive have been noted, even between closely related
species [38•,39]. Similarly, many of the same connections
are found between homologous neurons underlying
escape swimming in two molluscs of the subclass
Opisthobranchia: the nudibranch Tritonia diomedea and the
notaspid Pleurobranchaea californica [40•]. 

The complexity of the nervous system makes it difficult to
determine the extent of phylogenetic differences in neu-
ronal circuits. Therefore, work on the numerically simple
crustacean stomatogastric ganglion (STG), which contains
just 30 neurons, has been enlightening. The neuronal cir-
cuitry of the STG has been remarkably well preserved
over at least 350 million years of evolutionary divergence,
despite radical changes in the peripheral structures that it
controls [15,41••,42–44]. Most of the neurons in the pyloric
network are identifiable in all species, though the numbers
of some of the cell types can vary. The overall synaptic cir-
cuitry is similar, but there are differences in the relative
strength of particular synaptic connections and the amount
of electrical coupling between neurons in different species
[41••,43,44,45•]. In some species, the intrinsic properties of

individual neurons have diverged, causing similar circuits
to produce different motor patterns [42,43,46]. Most of the
identified neurons have retained their transmitter pheno-
type across species; however, in one more distantly related
species, the transmitter of two neurons is different but the
postsynaptic ionic response to those neurons has remained
the same as in the other species [47]. 

Constraints attributable to multifunctional
networks
One possible reason that neural networks are so well pre-
served across species is that neuronal circuits act as
generalists rather than specialists: a single motor circuit can
produce a variety of different motor patterns under differ-
ent circumstances [48–53] or at different times during the
development of the animal [54–57]. These different
behavioral outputs depend upon the actions of neuromod-
ulatory inputs, as well as sensory feedback. Modulatory
inputs can reconfigure networks by altering the strength of
synapses and changing the intrinsic firing properties of the
component neurons through the release of substances such
as amines and neuropeptides [52,58]. In addition, modula-
tory inputs can cause neurons to switch allegiance from
one network to another and, in some cases, can cause the
fusion of multiple independent networks into a single con-
joint network controlling a complex behavior [48,59–63].
This flexibility in the output of neuronal networks has two
evolutionary consequences. First, there is no need to
evolve a completely new circuit to produce a new behav-
ior. Second, the fact that a network must play roles in many
different behaviors or at different developmental stages
may constrain it from being altered because changes in the
network that would be advantageous for one behavior
might be disastrous for another.

Changes in the input to a circuit
If neuronal circuitry evolves more slowly than behavior,
then perhaps natural selection can alter the range of
behaviors produced by a circuit by changing its inputs or
by changing how it handles those inputs. Furthermore, it
may be more parsimonious to alter the inputs to a circuit
than to change the connectivity within a circuit itself. The
electrosensory system in South American electric fish pro-
vides an excellent example of behavioral differences
arising from differences in the inputs to similar circuits.
The pacemaker nucleus underlying the jamming avoid-
ance response of the two closely related South American
electric fish genera, Eigenmannia and Apteronotus, is simi-
lar. However, the nucleus receives different sets of inputs
from other brain areas that cause a different behavioral
response in the two species [64,65•]. Variations in the
inputs to circuits have been shown to play a role in the
expression of species-specific behavior in tadpoles [66–68],
and species differences in the aminergic input to the
mammalian cerebellum have also been reported [69]. In
addition, many phylogenetic variations have been
observed in the neuromodulatory inputs to the STG [15].
For example, serotonergic innervation of the STG is
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provided by a set of muscle receptor neurons that have
been identified in at least eleven species from six decapod
crustacean infraorders. There are species and lineage dif-
ferences in the number of these neurons (varying from
one to four pairs), the muscles that they innervate, and
their apparent peptide co-transmitters (e.g. allatostatin-,
cholecystokinin-, and FMRFamide-like immunoreactivi-
ty) [70•,71–73]. Furthermore, in the spiny lobsters, the
neurons are present, but they do not contain serotonin
[74]. Instead, serotonin is thought to be delivered as a cir-
culating neurohormone. Species differences in the mode
of delivery of a neuromodulatory substance, including
release from different neurons with different co-transmit-
ters and targets in the network, could dramatically alter
the role that the compound plays in the production of
behavior [71,75,76,77•].

Changes in responses and receptors
The response of particular neurons or brain areas can
change even if the transmitters involved stay the same
[53,74,78]. For example, serotonin is known to have two
effects on sensory neurons in the mollusc Aplysia californica
that play a role in non-associative learning: it increases
their excitability and causes spike broadening. However,
in other related species, the spike broadening response is
absent [79]. This may be attributable to differences in the
types of serotonin receptors on these identified neurons or
the coupling of the receptors to their second-messenger
systems. In one species, both the spike broadening and
excitability responses are absent, and this species also
lacks dishabituation and long-term sensitization in the tail
withdrawal reflex, which are thought to be mediated by
serotonin in Aplysia [80].

Changes in receptor type or distribution can lead to
marked changes in behavior. A particularly striking exam-
ple of this is seen in two species of voles that differ in their
affiliative behavior. The prairie vole (Microtus ochrogaster)
forms monogamous pair bonds, whereas the montane vole
(Microtus montanus) is solitary and does not show a prefer-
ence for former mates. Two peptide transmitters, oxytocin
in the female and vasopressin in the male, are responsible
for the pair-bonding behavior in prairie voles [81]. The pat-
tern of oxytocin and vasopressin immunoreactivity in the
brains of the two species does not differ substantially, but
the distribution of their receptors does [82,83•].
Furthermore, the gene for the vasopressin receptor differs
in its 5′-flanking region but not in the coding region [84••].
This difference may determine which regions of the brain
express the receptor. A transgenic mouse expressing the
prairie vole vasopressin receptor gene shows a pattern of
vasopressin receptor expression that is similar to that seen
in the prairie vole, and increased affiliative behavior in
response to vasopressin, also reminiscent of prairie voles
[84••]. This work demonstrates that the localization of
receptors that underlie differences in behavior can be
accomplished easily through mutations in the promoter
regions of particular genes. 

Importance of knowing phylogeny
When comparing the neuronal circuitry underlying behav-
iors in two species, it is important to understand the
phylogenetic relationships between the species and to con-
duct an out-group comparison. For example, by comparing
the neuronal responses to serotonin with a phylogeny
based on other characters, it was shown that the lack of a
sensory neuron excitability response in the mollusc
Dolabrifera was attributable to a secondary loss of the
response after splitting from other groups that retained
it [79]. Another good example is work on the jamming
avoidance response (JAR) in weakly electric fish.
Electroreception arose early in vertebrate evolution and
was subsequently lost and ‘re-evolved’ numerous times
[85]. Two different genera of wave-type electric fish both
evolved a JAR to prevent their electric signals from being
confused with similar signals from nearby fish [86,87]. This
behavior has very particular requirements, and thus both
species use an identical set of computational rules to per-
form the task. However, the circuitry underlying these
apparently identical behaviors resides in different brain
areas, revealing that the two behaviors evolved indepen-
dently [88].

Conclusions
Although nervous systems tend to be more evolutionarily
conserved than other parts of the body, centrally generated
behavioral patterns do change. It appears that rather subtle
changes in the nervous system can cause large and impor-
tant changes in the behavior of an organism. This fits very
well with our understanding of how neuronal circuits and
even single neurons can show dramatic alterations in activ-
ity with very small changes in parameters such as the
density of ion channels [89]. The modulatory inputs to
neural networks seem to be a very plastic trait in CNS evo-
lution. A change in the distribution of receptors or in the
expression of peptide co-transmitters can be made very
easily through changes in the promoter regions of the
genes. The nervous system is organized in such a way that
it can accept these changes and incorporate them to gener-
ate a novel species-specific behavior.
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